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Abstract

A numerical solution procedure is developed to solve a model for the steady-state gas velocity and temperature distributions in a

low-pressure chemical vapor deposition reactor. The gas velocity and three-dimensional temperature ®elds are both represented in

terms of globally de®ned trial functions; the gas temperature ®eld is discretized using a combined collocation/eigenfunction ex-

pansion technique. The enthalpy ¯ux across wafer/gas boundary is calculated explicitly and is found to vary signi®cantly as a

function of wafer position. An average heat transfer coe�cient is computed from the spatially resolved gas temperature ®elds and is

compared to typical radiative heat transfer rates in these systems. The convergence properties of the discretization method devel-

oped are also discussed in the context of quantifying solution accuracy. Ó 1999 Elsevier Science Inc. All rights reserved.
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Notation

Ayz the y±z cross sectional area of the gas domain
alm; blmn; clmn; mode amplitude coe�cients
dlmn; flmn; glmn

B, C, G, F column vectors for coe�cients
blmn; clmn; glmn; flmn

C1;C2 dimensionless variables of gas temperature
boundary conditions

Cp gas mixture heat capacity, J/(kg K)
f ; g representative functions to de®ne inner prod-

uct
h average heat transfer coe�cient, J=�m2K s�
I identity matrix
Ii ith integral
I, J, L, M, N numbers of modes
P characteristic pressure drop in x direction, Pa
Q radiant energy ¯ux, J/(m2 s)
q wafer/gas interface energy ¯ux, J/(m2 s)
R residual of gas temperature equation
Rv residual of gas ¯ow equation
R1 aspect ratio
R2 radius of susceptor/wafer, m
Rs susceptor radius, m
Rw wafer radius, m
r radial position on wafer
Tamb ambient inlet temperature, K
Tg gas temperature

Tg;z�0 gas temperature boundary condition at z � 0
Tw wafer/susceptor temperature
Twall wall temperature
TX; ToX gas temperature de®ned by Eq. (4)
t time
hvi average gas ¯ow velocity in chamber, m/s
vx gas ¯ow velocity in x direction
vmax maximum gas ¯ow velocity in the chamber,

m/s
v̂x gas ¯ow velocity/pressure drop ratio in x

direction
2 �X ; 2 �Y ; 2 �Z characteristic lengths of gas domain, m
x; y; z streamwise, spanwise, and normal coordinates

Greek
av; bv dimensionless constants of gas momentum

balance equation
aw dimensionless parameter in wafer energy bal-

ance equation �� R2
w�=�jDzTamb��

bgt; cgt; dgt dimensionless constants of gas energy balance
equation

�w dimensionless parameter in wafer energy bal-
ance equation �� 2r�R2

wT 3
amb=�jDz��

f;/;w trial function components of gas temperature
f0 trial function of gas temperature

�f0�z � 0� 6� 0�
g trial function of gas velocity
j gas mixture thermal conductivity, J/(mKs)
K column vector of eigenvalues
k eigenvalues de®ned by (6)
l gas mixture viscosity, kg/(m s)
n normalized trial function of gas velocity
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1. Introduction

Chemical vapor deposition (CVD) is a technique exten-
sively used in the semiconductor industry to form nonvolatile
solid ®lms on a substrate from chemical reactions fed by the
gas phase transport of the reacting species. The quality of the
®lm, e.g., the thickness, composition, and microstructure, is a
critical manufacturing requirement. Moreover, the ®lm quality
must be reproducible from wafer to wafer and must also be
spatially uniform across each wafer.

Temperature, along with pressure, position, and reactant
gas composition, is one of the most important factors in high-
quality deposition processes. Because the deposition reaction is
initiated when the vapor phase reactants receive su�cient en-
ergy from the wafer surface or other heat sources, a detailed
temperature distribution pro®le, including the gas phase and
wafer, is required for a complete process model. This tem-
perature information also can be used to design and control
the reactor to operate at processing conditions that reduce
unwanted gas phase reactions which might result in particle
contamination.

There is a large literature on the mathematical modeling
and simulation of di�erent CVD systems. Kleijn (1995) pro-
vides an overview of these modeling issues. Middleman and
Hochberg (1993) discuss di�erent modeling aspects from a
chemical engineering viewpoint, and Badgwell et al. (1995)
summarized modeling and control issues in CVD. Most pub-
lished CVD system models are solved numerically, either by
the ®nite volume method (Kleijn et al., 1991), ®nite element
method (Mo�at and Jensen, 1988), or ®nite di�erence method
(Duverneuil and Couderc, 1992). These discretization methods
are based on spatially localized trial functions, and are well-
suited for solving problems with irregular geometries. The
large number of algebraic or di�erential equations that are

generated by these discretization procedures, however, may
make the resulting simulations inappropriate to use for real-
time control applications or iterative optimization methods.
On the other hand, those models su�ciently simple to be
solved explicitly may be incapable of resolving important
physical features.

In this work, we develop an analytical approximation so-
lution based on global trial function expansions to solve a
combined set of CVD system gas ¯ow and temperature mod-
eling equations. This choice was motivated by the excellent
convergence properties of spectral methods (Gottlieb and
Orszag, 1977), and the clear connections that remain during
the solution procedure between model parameters and the
solution behavior. We see our approach as a method inter-
mediate between the ®nite element and explicit solution pro-
cedures; we feel the techniques presented in this paper are
particularly well-suited to distinguishing factors which may
require more detailed simulation from those which can be
identi®ed as unimportant.

For the CVD system studied, the gas ¯ow ®eld is solved ®rst
using a Galerkin projection on a set of globally de®ned poly-
nomial trial functions. We then use a two-dimensional eigen-
function expansion method, conjugated with a one-point
collocation discretization in the spanwise direction, to compute
the three-dimensional gas temperature pro®le. The heat
transfer rate at the wafer surface is calculated explicitly from
the eigenfunction expansion solution. We compare the con-
tributions of conductive and convective mechanisms to typical
radiative heat transfer rates in CVD systems and present a
simpli®ed heat transfer coe�cient computed by averaging the
wafer/gas boundary ¯ux across the wafer.

2. Model formulation

2.1. The CVD system

The BTU-ULVAC ERA-1000 selective tungsten deposition
system is the CVD reactor to be considered in this modeling
study. The geometry and dimensions of this commercially
manufactured, single-wafer, cold-wall reactor are shown in
Fig. 1. Reactant gases are fed to the reactor from two sources:
a gas mixture of silane, tungsten hexa¯uoride, and argon
carrier gas is injected through a two-dimensional nozzle in-
stalled on one side wall, and hydrogen is pumped in through a

q gas mixture density, kg/m3

r Boltzmann's constant, J/(m2K4 s)

Superscripts
� dimensional quantities in SI units

Subscripts
i, j, k, l, m, n mode numbers

Fig. 1. Sketch of the tungsten CVD reactor system.
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transparent showerhead mounted in the top of the reactor
chamber. Gases mix in the chamber and react at the surface of
a 4 inch wafer located at the chamber center. The wafer is
supported by a slowly rotating 0.16 m diameter quartz sus-
ceptor and the wafer edge is covered by a quartz guard ring to
help reduce edge heat loss. This leaves a 0.076 m diameter area
of wafer surface exposed to reaction. An incoherent tungsten±
halogen lamp ring is used to heat the wafer to 310°C through
the transparent showerhead. Typical deposition runtimes last 5
min after operating temperature is reached.

2.2. Gas ¯ow ®eld

Although feed gas can enter from both the showerhead and
side slits, we will only consider the case where the gas ¯ow ®eld
over the wafer is assumed to be dominated by the horizontal
¯ow, generated by the feed gas entering through the side wall
nozzle. This assumption is suitable in our simulated operating
condition in which H2 is not used; it is also supported by the
gas ¯ow visualization tests performed by the system manu-
facturer (BTU-ULVAC, 1996) using a TiO2 tracer which
demonstrates that a rectangular pipe ¯ow model may be a
suitable approximation for the reactant gas mixture in the
neighborhood of the wafer. The fully developed, laminar ve-
locity pro®le is obtained by solving steady state Navier±Stokes
and continuity equations. The transport and gas thermody-
namic properties are assumed constant and are evaluated at
the reference temperature Tamb. It is also assumed that the slow
wafer rotation as well as buoyancy-induced secondary ¯ows,
such as longitudinal and transverse recirculation resulting
from free thermal convection near the wafer surface and
chamber walls, do not a�ect the ¯ow ®eld. Since the Grashof
number evaluated at the gas inlet is small (Gr� 1.99) in our
simulation, transverse recirculations should not occur in this
low-pressure system according to the criteria suggested by
Ingle and Mountziaris (1994). Other studies, such as Holstein
and Fitzjohn (1989) and Jensen (1989), reveal that longitudinal
recirculations occur in atmospheric pressure CVD systems at
higher Rayleigh numbers (>1780) than those representative of
our system (Ra� 1.3463) and so also should not occur.
Therefore, the governing equations for the ¯ow ®eld compo-
nent in the x direction are written as

ovx

ox
� 0;

o2vx

oy2
� av

o2vx

oz2
� bv:

The dimensionless pressure drop term bv � 2PY
2
=�lhviX �

can only be determined after the ¯ow ®eld equations are
solved. Thus, de®ning the ¯ow velocity/pressure drop ratio as
v̂x � vx=bv; the momentum balance equation can be written as

o2v̂x

oy2
� av

o2v̂x

oz2
� 1; �1�

subject to no-slip boundary conditions at y � 0; 1 and
z � 0; 1.

2.3. Gas temperature ®eld

Neglecting heat generated by viscous dissipation and both
the gas phase and surface chemical reactions, the gas phase
energy balance equation gives

vx
oTg

ox
� dgt

o2Tg

ox2
� bgt

o2Tg

oy2
� cgt

o2Tg

oz2
: �2�

Gas temperature boundary conditions are based on as-
suming the showerhead temperature equals the chamber wall
temperature and that the convective heat transfer dominates at
the reactor gas outlet. Gas temperature is set equal to wafer/
susceptor temperature Tw inside the region of radius R2 at
z � 0, and to the wall temperature Twall outside this region:

Tg � 0 at x � 0;

oTg

ox
� 0 at x � 1;

Tg � C1�T �wall� at y � 0; 1;

Tg � C1�T �wall� at z � 1;

Tg �
C2�T �w� at z � 0; �xÿ 0:5�2 � R2

1�y ÿ 0:5�26R2
2;

C1�T �wall� at z � 0; R2
2 < �xÿ 0:5�2 � R2

1�y ÿ 0:5�2:

(
�3�

In the above equations, the following dimensionless pa-
rameters and variables are used: x � x�=2X ; y � y�=2Y ; z �
z�=2Z; vx � v�x=hvi; Tg � �T �g ÿ Tamb�=Tamb. Here, Tamb is the
inlet gas temperature and hvi is average gas entrance velocity.
Parameters C1 and C2 are de®ned as �T �wall ÿ Tamb�=Tamb and
�T �w ÿ Tamb�=Tamb, respectively. The aspect ratio is R1 � Y =X
and the radius of the wafer/susceptor is R2 � Rs=2X . For the
special case where the chamber wall temperature is set equal to
constant inlet ambient temperature, the wafer/susceptor be-
comes the only heat source in the system and C1 � 0, giving
homogeneous boundary conditions at all boundaries except
z � 0.

Representative process operating conditions follow the
recipe of Ammerlaan (1994), which correspond to a feed vol-
umetric ¯ow rate of 250 sccm, a feed gas temperature 298 K
and mixture ratio of WF6=SiH4=Ar equal to 1/1/23, chamber
pressure of 0.5 Torr, and a uniform wafer temperature of
310°C. The gas mixture density q, thermal conductivity j, heat
capacity Cp, and viscosity l are determined from mixture-av-
eraged properties (Kee et al., 1986) and the pure species vis-
cosities are calculated from the kinetic theory of gases at
reference temperature 298 K. The value of dimensionless pa-
rameters are given in Table 1.

Table 1

De®nitions and values of physical properties and dimensionless parameters

Physical properties a Value Dimensionless parameters Value

q 0.0013 kg/m3 av � Y
2
=Z

2
44.4444

j 0.0168 J/(m K s) bv � 2PY
2
=�lhviX � )589.8593

Cp 520.19 J/(kg K) agt � j=�qCp� 0.0240

l 2.18 ´ 10ÿ5 kg/(m s) dgt � agt=�2hviX � 0.1203

bgt � agtX=�2hviY 2� 0.1732

cgt � agtX=�2hviZ2� 7.6990

a All properties are evaluated at reference temperature Tamb � 298 K.
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3. Flow ®eld solution

A Galerkin technique is used to compute the ¯ow ®eld
velocity component v̂x as a function of y and z. We choose the
trial functions gij to satisfy the no-slip boundary conditions
and continuity equation by de®nition,

gij � �yi ÿ yi�1��zj ÿ zj�1� i � 1; . . . ; I ; j � 1; . . . ; J

and normalize this sequence with a numerical Gram±Schmidt
orthonormalization procedure to de®ne the trial function nij.
The residual is formed by substituting the truncated series
expansion approximation v̂x �

PI ;J
i;j�1 dijnij into Eq. (1) to ob-

tain

Rv �
XI ;J
i;j�1

dij
o2nij

oy2
� av

o2nij

oz2

 !
ÿ 1:

The mode amplitude coe�cients dij are computed by mini-
mizing the residual with the Galerkin projection, i.e., project-
ing the residual onto each trial function nmn:

XI ;J
i;j�1

dij
o2

oy2
� av

o2

oz2

� �
nij; nmn

� �
� h1; nmni

m � 1; . . . ; I ; n � 1; . . . ; J ;

where the inner product is de®ned as

hf ; gi �
Z1

0

Z1
0

fg dy dz:

The centerline velocity pro®les (at y� 0.5 and z� 0.5) of the
two-dimensional ¯ow computed by this procedure are shown
in Fig. 2.

The dimensionless parameter bv and characteristic pressure
drop P can be recovered from the numerically computed so-

lution. Because v�x � hvivx � hvibvv̂x, the volumetric ¯ow rate is
found by integrating the dimensionless ¯ow velocity over the
unit domain multiplied by the true area of the cross section
Ayz � 4Y Z:

Z2Z

0

Z2Y

0

v�x dy� dz� � 4Y Zhvibv

Z1
0

Z1
0

v̂x dy dz:

Using the de®nition of average velocity, hvi � RAyz
v�x dy dz=Ayz;

bv �
Z1

0

Z1
0

v̂x dy dz

0@ 1Aÿ1

P � lhviX
2Y

2
bv � 0:0397 Pa or 0:2978 mTorr:

Under some circumstances this Galerkin procedure generates
accurate results with a single term in the series (MacCluer,
1994). This is true in our system in the z direction, but it is not
valid in the y direction because of the high aspect ratio av of
the system; single term versus the converged solutions are
compared in Fig. 2. However, since the ¯ow ®eld is essentially
¯at over the range of y most critical to our heat transfer cal-
culations (the region containing the heated wafer and suscep-
tor), the simpli®ed ¯ow ®eld expression,
vx�y; z� � 4vmaxz�1ÿ z�, will be used for the temperature ®eld
computations.

4. Gas temperature eigenfunction expansion solution

The ®rst step in computing a solution to the gas tempera-
ture model by an eigenfunction expansion technique is to de-
®ne two separate gas temperature trial function expansions.

Fig. 2. Comparison of ¯ow ®eld calculations at Re� 1.54 (250 sccm). Solid curves correspond to the I� J� 16 term trial function solution. Dashed

curves show the single trial function approximation (it lies virtually on top of the solid curve on the left).
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The ®rst is used to minimize the temperature equation residual
inside the reactor gas domain �TX� and the second expresses the
e�ect of the nonhomogeneous boundary condition on the
temperature ®eld �ToX�:
Tg � TX � ToX: �4�

The trial functions of each series are de®ned by the product
of three individual functions corresponding to each direction
of the physical domain shown in Fig. 1

Tg �
XL;M ;N

l;m;n�1

blmn/l�x�wm�y�fn�z� �
XL;M ;

l;m;�1

alm/l�x�wm�y�f0�z�:

In the above equation, blmn and alm are mode amplitude co-
e�cients, /l;wm; and fn are trial function components in the
three physical directions, and f0 is chosen to not vanish at
z � 0.

The solution procedure developed combines collocation
discretization in the spanwise (y) direction and an eigenfunc-
tion expansion in the (x, z) planes de®ned at each collocation
point ym. The solution approximately satis®es the governing
equation at each collocation position and the three-dimen-
sional results can be reconstructed even when a single interior
collocation point is used.

We can write the collocation-discretized trial function ex-
pansion as

Tg�x; ym; z� � w�ym�
XL;N
l;n�1

blmn/l�x�fn�z�

� w�ym�
XL

l�1

alm/l�x�f0�z� m � 1; . . . ;M ; �5�

where w�ym� is the scalar value of the single trial function w at
the mth collocation point. The trial function components /�x�
and f�z� then are computed from the eigenfunctions of the heat
equation subject to homogeneous boundary conditions, i.e.,
solving for nontrivial solutions to

dgt
o2TX

ox2
� cgt

o2TX

oz2
� ÿkTX; �6�

where k is the eigenvalue, subject to boundary condition TX � 0
at z � 0; 1 and x � 0; and oTX=ox � 0 at x � 1. Applying the
separation of variables technique to Eq. (6), the eigenfunctions
and eigenvalues are calculated as

/l�x� � sin
2lÿ 1

2
px

� �
;

fn�z� � sin�npz�;

kln � dgt
2lÿ 1

4

� �2

� cgtn
2

" #
p2; �7�

thus, the TX trial function expansion contribution to the tem-
perature ®eld is given by the eigenfunction expansion

TX � w�ym�
XL;N
l;n�1

blmn sin
2lÿ 1

2
px

� �
sin�npz�:

De®ning f0 � 1ÿ z; ToX can be represented as

ToX � w�ym�
XL

l�1

alm sin
2lÿ 1

2
px

� �
�1ÿ z�: �8�

The nonhomogeneous boundary condition Eq. (3), denoted as
Tg;z�0, is approximated by projecting the trial function expan-
sion Eq. (8) evaluated at z � 0 onto the trial functions /l�x�
Eq. (7) to determine the coe�cents alm:

w�ym�
XL

i�1

aim

Z1
0

/i�x�/l�x� dx �
Z1

0

Tg;z�0/l�x�dx

�
Z1=2�R2

1=2ÿR2

C2/l�x� dx;

l � 1; . . . ; L

to ®nd

alm � 8C2

�2lÿ 1�pw�ym� sin
2lÿ 1

4
p

� �
sin

2lÿ 1

2
pR2

� �
:

Substituting the trial function expansion Eq. (4) into the
heat Eq. (2) de®nes the residual:

R � dgt
o2TX

ox2
� cgt

o2TX

oz2

� �
� dgt

o2ToX

ox2
� cgt

o2ToX

oz2

�
ÿvx�y; z� oToX

ox

�
ÿ vx�y; z� oTX

ox
� bgt

o2TX

oy2
� bgt

o2ToX

oy2

and at the mth collocation point in the y direction

R�x; ym; z� �
XL;N
l;n�1

blmnw�ym� dgt
d2/l

dx2
fn

�
�cgt/l

d2fn

dz2

�

�
XL

l�1

almw�ym� dgt
d2/l

dx2
f0

�
ÿvx�ym; z� d/

dx
f0

�

ÿ
XL;N
l;n�1

blmnw�ym�vx�ym; z�d/
dx

fn � bgt

XL;N
l;n�1

blmn
d2w�ym�

dy2
/lfn

� bgt

XL

l�1

alm
d2w�ym�

dy2
/lf0 m � 1; . . . ;M : �9�

Eigenfunction expansions are used to approximate all
nonhomogeneous terms and all terms which are not expressed
directly in terms of the eigenfunctions /lfn de®ned in Eq. (7).
This allows the eigenfunction expansion approximation to the
residual to be written as

R�x; ym; z� � w�ym�
XL;N
l;n�1

blmn�ÿkln�/lfn

ÿ w�ym�
XL;N
l;n�1

clmn/lfn ÿ w�ym�
XL;N
l;n�1

flmn/lfn

� bgt
d2w�ym�

dy2

XL;N
l;n�1

blmn/lfn � bgt
d2w�ym�

dy2

XL;N
l;n�1

glmn/lfn

�
XL;N
l;n�1

�� � ��/lfn m � 1; . . . ;M :

The mode amplitude coe�cients are (for the detailed calcula-
tions, see Appendix A)
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clmn � dgtp
2n
�2lÿ 1�2alm � 8vmax

n3p3
a1�1ÿ �ÿ1�2lÿ1��2� �ÿ1�n�alm

� 8vmax

n3p3
�2� �ÿ1�n�

XL

j�1
j 6�l

ajm�2jÿ 1�

� 1ÿ �ÿ1�l�jÿ1

l� jÿ 1
� 1ÿ �ÿ1�lÿj

lÿ j

 !
;

flmn � 8vmax

1

3

�
� 1

n2p2

�
blmn � 16

vmax

p2

XL

j

XN

k�1
k 6�n

bjmk

� 1� �ÿ1�k�n

�k � n�2
 

ÿ 1� �ÿ1�kÿn

�k ÿ n�2
!
� 4vmax

1

3
� 1

n2p2

� �

� �2lÿ 1�
XL

j�1
j 6�l

XN

k�1

bjmk
1ÿ �ÿ1�l�jÿ1

l� jÿ 1
� 1ÿ �ÿ1�lÿj

lÿ j

 !

� 8
vmax

p2

XL

j�1
j6�l

XN

k�1
k 6�n

bjmk�2jÿ 1� 1ÿ �ÿ1�l�jÿ1

l� jÿ 1

 

� 1ÿ �ÿ1�lÿj

lÿ j

!
� 1� �ÿ1�k�n

�k � n�2 ÿ 1� �ÿ1�kÿn

�k ÿ n�2
 !

;

glmn � 2

np
alm:

Projecting the residual approximation onto each trial
function /lfn and setting the resulting equation to zero gives,

w�ym�kln ÿ bgt
d2w�ym�

dy2

� �
blmn

� w�ym�
XL;N
j;k�1

bjmkI5I6 � ÿw�ym�clmn

� bgt
d2w�ym�

dy2
glmn l � 1; . . . ; L; n � 1; . . . ;N ;

where flmn is replaced by
PL;N

j;k�1 bjmkI5I6; and I5; I6 are de®ned in
Appendix A.

A computationally e�cient method for calculating the blmn

is to rearrange each blmn; clmn; glmn; and kln array into column
vector format B,C,G, K, respectively, and to reorder the
fourth-order tensor, generated by the product of I5 and I6, into
an array F. This gives

I w�ym�Kÿ bgt
d2w�ym�

dy2

� �
� w�ym�F

� �
B

� ÿw�ym�C� bgt
d2w�ym�

dy2
G; �10�

where I is identity matrix. Since there are L�M � N unknown
blmn coe�cients and L�M � N equations, this linear system
can be solved directly to ®nd gas phase temperature, given the
¯ow ®eld characteristic vmax and wafer/susceptor and ambient
gas temperatures used to compute C2.

5. Results and discussions

Based on the preceding analysis, representative results are
presented for the computed gas temperature pro®le at the
centerline of the reactor chamber when the trial function w in
the y direction is selected as 4y�1ÿ y�. This corresponds to
M � 1 and y1 � 0:5.

5.1. Solution convergence

The error of the eigenfunction expansion solution results
from the truncated, ®nite-term expansions of both the non-
homogeneous boundary condition and the eigenfunction ex-
pansion approximation of all terms in the gas temperature
residual not expressed directly in terms of the eigenfunctions.
The modal nature of eigenfunction expansion-based discreti-
zation techniques means that the values of the coe�cients blmn

and alm do not depend on the truncation number L and N .
Therefore, the magnitude of the L2 norm of the residual de-
®ned by substituting the truncated trial function expansion
into Eq. (2) can be estimated by computing the rates of de-
crease of blmn and alm magnitudes as l; n approach in®nity.
Figs. 3 and 4 display the magnitudes of these mode amplitude
coe�cients. The decreasing amplitude in alm and blmn for in-
creasing mode numbers is a strong indicator of the trial
function expansion convergence in an L2-norm sense. We note
that the relative rates of convergence (i.e., modes l versus
modes n) in the expansion coe�cients blmn are governed by the
eigenvalues kln; where an inverse relationship is observed be-
tween the magnitudes of eigenvalues and the mode coe�cients

Fig. 3. The boundary mode amplitude coe�cients alm.

Fig. 4. The interior mode amplitude coe�cients blm.
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when solving the linear system Eq. (10). Furthermore, as
represented in Eq. (7), the eigenvalue magnitude depends more
strongly on mode number n relative to l because the dimen-
sionless parameter cgt is much larger than dgt. These di�erent
contributions to eigenvalue growth rate results in the ampli-
tudes blmn becoming small after only several modes of n, re-
quiring a larger total mode number L relative to N to achieve a
``balanced'' convergence behavior in the x and z directions.

5.2. Gas temperature and Gibbs phenomenon

A representative gas temperature ®eld solution is presented
in Fig. 5; the thick contour lines are reconstructed directly
from Eq. (5). The Gibbs phenomenon (Gottlieb and Orszag,
1977) results from the discontinuities in the piecewise-smooth
gas temperature boundary condition at z � 0, and is most
prominent near the wafer leading and trailing edges. It is im-
portant to stress that these wiggles are a true feature of the
solution, and are an indicator of convergence of global trial
functions near the discontinuities. As reported in a recent
paper of Gottlieb and Shu (1997), the global nature of the
Fourier series, where the Fourier mode coe�cients are deter-
mined by integration over the entire domain including the
discontinuities, contributes to the slow decay of the mode
amplitude coe�cients as seen in Figs. 3 and 4 associated with
the modes /l�x�: One approach to enhancing the convergence
rate for a given set of Fourier coe�cients is to use Fourier-
space ®lters, which eliminate the truncation error resulting
from the ®nite Fourier sum (Gottlieb and Shu, 1997). There
are no additional computational costs associated with using
this ®lter, and ®ltered results converge to the same solution as
un®ltered pro®les in an L2 sense. Two, second-order ®lters
rX�l; n� and roX�l� based on the cosine function are used for
the post-processing reconstruction of the gas temperature
pro®le:

Tg�x; ym; z� � w�ym�
XL;N
l;n�1

blmnrX�l; n�/l�x�fn�z�

� w�ym�
XL

l�1

almroX�l�/l�x�f0�z�; m � 1; . . . ;M ;

rX�l; n� � 1

4
1� cos

pl
L

� �� �
1� cos

pn
N

� �� �
roX�l� � 1

2
1� cos

pl
L

� �� �
:

The thin contour lines in Fig. 5 correspond to the ®ltered re-
sults, demonstrating how the oscillations associated with the
Gibbs phenomenon are removed from the contours. Minor
deviations occur near the wafer leading edge and the trailing
edge because of the nature of the Fourier-space ®lter, which
tends to increase the convergence rate inside the piecewise
smooth segments and smooth the solutions in the neighbor-
hood of the discontinuities. Increasing the number of trial
functions reduces these deviations since both ®ltered and un-
®ltered results converge to the same solution.

Fig. 6 shows the comparison of two ®ltered temperature
pro®les computed for the nominal feed gas ¯ow rate of 250
sccm and a case corresponding to 2500 sccm. From the tem-
perature contour lines in (a), it is observed that convective
e�ects appear to contribute little to the energy transferred from
the wafer to gas phase over conduction, giving a large, high-
temperature area in the region above and slightly downstream
of the wafer. At ten times of the nominal ¯ow, as shown in (b),
the temperature contours show the apparent distortion of the
heated gas pro®le due to the convective transport of thermal
energy out of the heated gas zone. Heat transfer rates at the
top wafer surface, de®ned as the heat ¯ux from wafer to the
adjacent reactant gas, are shown in Fig. 6(c)±(d). The heat
transfer rates as a function of wafer position can be computed
by evaluating the derivatives of the gas temperature at z � 0

Fig. 5. Comparison of ®ltered and un®ltered gas temperature ®elds. The dark contour lines show the Gibbs phenomenon near the wafer surface

particularly near the leading and trailing edges. The light contour lines are ®ltered by a Fourier-space ®lter.
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2Z
w�ym�

XL;N
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blmnnp sin
2lÿ 1

2
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� � 

ÿ
XL

l�1

alm sin
2lÿ 1

2
px

� �!
: �11�

In Fig. 6(c)±(d) we observe that the enthalpy ¯ux at z � 0 is
nearly zero over the range of x from the gas inlet to the wafer
leading edge. The amount of energy exchanged suddenly jumps
to its maximum value when gas crosses the wafer leading edge.
As the gas temperature near the wafer increases, the heat
transfer rate slows. After the gas passes the wafer trailing edge,
the high temperature gas exchanges energy back to the low
temperature chamber wall and results in a positive transfer
rate. The enthalpy ¯ux plots show the increased heat transfer
at higher gas velocity, since convection enhances the total
energy transfer.

5.3. Comparison to radiative heat transfer rates

In a previous study (Adomaitis, 1997), a wafer thermal
dynamics model was developed which accounted for radiative
heat exchange between the wafer and chamber walls, heating
from the lamp banks, and thermal conductivity through the
wafer being processed:

oTw

ot
� 1

r
o
or

r
oTw

or

� �
� �w�1ÿ T 4

w� � awQ:

The dimensionless wafer temperature is de®ned as Tw �
T �w=Tamb; radial position r � r�=Rw; and time t � kt�=qCpR2

w. At
steady state, and for uniform wafer temperature and vacuum
conditions, the wafer temperature equation can be used to

determine the energy loss by radiation because the energy
provided by the heating lamp will balance radiative energy
loss. Assuming a spatially uniform lamp radiant energy dis-
tribution and substituting the process parameters into the
equation, the radiant energy ¯ux required to maintain a wafer
at 310°C is

Q � 2rT 4
amb�T 4

w ÿ 1� � 12; 221 J=�m2
s�;

where r is the Boltzmann's constant� 5:677� 10ÿ8 J=�m2
K4s�.

Comparing this result with the heat transfer rate plotted in
Fig. 6(c), we conclude that gas/wafer heat transfer accounts for
only about 1% of the wafer energy loss in this low-pressure
system. However, because of the large volume of heated gas
above the wafer, our analysis alerts us to the possibility of gas
phase reactions in this process.

5.4. Average heat transfer coe�cient

Another application of our solution approach is the nu-
merical estimation of an average heat transfer coe�cient h,
which usually is estimated by collecting experimental data and
determining correlations on the basis of dimensional analysis.
The heat exchange relation we wish to ®nd has the following
form

h�Tamb ÿ T �w� � j
oT �g
oz�

� �
z�0

:

The total energy transferred from wafer to gas phase is cal-
culated by integrating the right-hand side of this equation
obtained from Eq. (11) over the wafer surface. The average
heat transfer coe�cient is obtained by dividing the total energy
with the wafer-feed gas temperature di�erence and the wafer
surface area. The relationship of h and Reynolds number is
plotted in Fig. 7. Comparing the heat transfer coe�cient at
zero gas ¯ow with the value obtained at the nominal operating

Fig. 6. Gas temperature solution and wafer/gas heat transfer rates at centerline of the reactor chamber with di�erent gas ¯ow velocities. Temperature

contour lines are labeled in °C. (a), (c) Simulation performed at Re� 1.54 (250 sccm). (b), (d) Simulation performed at Re� 15.36 (2500 sccm).
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condition (Re� 1.54), we ®nd further evidence that convective
transport e�ects contribute little to overall heat transfer under
normal operating conditions for this CVD processing recipe.

6. Concluding remarks

In this paper, a hybrid weighted residual method for com-
puting solutions to the gas ¯ow and temperature ®elds was
developed and applied to a commercial CVD reactor system.
The solution procedure developed allows fast and demon-
stratively accurate analysis of models whose complexity lies in
between those that can be solved analytically and those that
must be solved with ®nite element packages. We believe one of
the primary bene®ts of this approach is its utility in distin-
guishing factors which warrant more detailed analysis from
those which do not.

Using the procedure developed, the heat transfer rate was
calculated explicitly at the wafer/gas boundary. A comparison
between the convective heat loss of the wafer with the radiative
energy losses showed clearly that convective heat transfer only
has small e�ect in this low-pressure system. A heat transfer
coe�cient was estimated from the global trial function ex-
pansion solution by integrating the heat ¯ux across the wafer.
The convergence of the solution was demonstrated by the
decreasing mode amplitude coe�cients of the eigenfunction
expansion solution.
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Appendix A

The unknown coe�cients clmn; flmn; and glmn can be found
by multiplying both sides of the corresponding equations listed
below by /lfn and integrating over the unit domain.

1. w�ym�
PL;N

j;k�1 cjmk/jfk � w�ym�
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j�1 ajm ÿvx�d/j=dx�f0�
ÿ
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clmn � 4
XL

j�1
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2

� �
p
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0

cos
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2
px

� �24
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2
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� �
dx

35 4vmax

Z1
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24 ÿz�2 sin�npz�dz
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2
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sin
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2
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� �24

� sin
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2
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dx

35 Z1
0

�1ÿ z� sin�npz�dz
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� 4
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j�1

ajmI1I2 � 4
XL

j�1

ajmI3I4

l � 1; . . . ; L; m � 1; . . . ;M ; n � 1; . . . ;N

and the four integrals are calculated as follows.
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Fig. 7. The relationship of Reynolds number and average heat transfer

coe�cient h at 0.5 Torr.
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